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Abstract

In materials with local variations in yield stress, such as functionally graded materials or materials with interfaces
or interlayers, the local near-tip crack driving force can become di�erent from the nominally applied far-®eld value.
The near-tip crack driving force is enhanced, if the yield stress increases in the crack growth direction, and vice

versa. This e�ect is termed as the yield stress gradient e�ect. A model is developed that allows us to derive
analytical expressions to quantify the e�ect and to evaluate the e�ective crack driving force for smooth and abrupt
variations in yield stress. These expressions can be used to optimize graded materials and interface and interlayer
transitions so that the fracture resistance increases. The predictions of the model agree well with the results of

previously reported ®nite element computations for cracks near bimaterial interfaces. Available experimental
observations of the fatigue crack growth normal to interfaces and interlayers can be qualitatively explained. The
yield stress gradient e�ect plays an important role for the fracture behavior in multiphase or composite materials, in

functionally graded materials, in materials with special surface treatments like nitrided or case hardened steels, as
well as in brazed and welded components. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. The aim of this study

There exists a wide variety of applications in engineering practice where variations in yield stress
appear, for instance, in welded structures, soldered joints, nitrided or case hardened components. In all
structures consisting of multi-phase materials, composites, or graded materials, yield stress variations are
inherent. A ®rst experimental evidence that a gradient in yield stress in¯uences the behavior of cracks
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was found by Suresh et al. (1992) for fatigue cracks growing perpendicular to the interface of steel bima-
terials. Later experiments, Suresh et al. (1993), further con®rmed this ®nding and computational studies
(Sugimura et al., 1995; Kim et al., 1997) have given a ®rst hint to rationalize the observations.

The purpose of this paper is to provide an analytical model to explain why gradients in yield stress
a�ect the crack growth behavior. It is demonstrated that a yield stress gradient induces an additional
term of the crack driving force, which leads to an increase or decrease of the e�ective crack driving
force. The predictions of the model are con®rmed by available experimental observations and compu-
tational results. The model is applied to deduce the e�ective crack driving force for cracks near inter-
faces, at interlayers, in layered and in graded materials.

In the following, a brief survey of related literature will be given.

1.2. Background

1.2.1. Fracture mechanics studies
Numerous researchers have studied the fracture mechanics of inhomogeneous elastic materials.

Classical papers dealing with cracks lying in a bimaterial interface are, for example, those by Williams
(1959) and Rice (1988). An extensive overview of the behavior of interface cracks and of cracks parallel
to interfaces has been given by Hutchinson and Suo (1992).

Cracks perpendicular to an interface have been analyzed, e.g., by Zak and Williams (1963), Cook and
Erdogan (1972), Romeo and Ballarini (1995). The most relevant results are the following: When a crack
lying in the elastically weaker material approaches the interface to a sti�er material, the (local) stress
intensity decreases and reaches zero directly at the interface. For a crack in the sti�er material, the stress
intensity increases to in®nity at the interface. Chen et al. (1988) have studied the applicability of the J-
integral for such crack geometries. Criteria for crack de¯ection at an interface were derived, among
others, by He and Hutchinson (1989), Martinez and Gupta (1994) and Lee et al. (1996).

A comprehensive review of the processing and the properties of functionally graded materials (FGMs)
has been presented recently by Suresh and Mortensen (1998). The fracture mechanics of cracks in
FGMs has been developed in a series of papers by Erdogan and coworkers, e.g., Delale and Erdogan
(1983), Erdogan (1995) and Erdogan and Wu (1997). It has been found that the stress intensity
approach holds as long as the elastic properties remain piecewise continuous and di�erentiable. In gen-
eral, the (local) stress intensity factor is higher than in a homogeneous material, if the Young's modulus,
E, increases in crack growth direction, and vice versa. It is known that for cracks in gradient direction,
the J-integral (Rice, 1968a, 1968b), becomes path dependent. Honein and Herrmann (1997) have derived
an extension of the J-integral for FGMs which is path independent. Cracks near the boundary between
a homogeneous material and an FGM have been considered by Delale and Erdogan (1988), Erdogan et
al. (1991) and by Choi (1996). Numerical studies have been reported by Gu and Asaro (1997a, 1997b)
and by Bao and Wang (1998).

Plasticity aspects have been taken into account in papers by Shih (1991), He et al. (1992), Del®n et al.
(1995), Romeo and Ballarini (1997) and Wang and StaÊ hle (1998). These papers do not deal with the
yield stress gradient e�ect but present small-scale yielding solutions for the stress and deformation ®elds
of cracks at interfaces between materials with di�erent elastic properties.

1.2.2. The yield stress gradient e�ect
Suresh et al. (1992) conducted fatigue experiments on an explosion clad bimaterial consisting of a fer-

ritic and an austenitic steel. The elastic properties (Young's modulus, E, Poisson's ratio, u ) and the yield
stresses, sy, of the two materials were approximately the same, but the strain hardening exponent, n, the
tensile strength, su, and the Vickers microhardness number, H, of the austenitic steel were signi®cantly
larger than those of the ferritic steel. The crack growth rate was measured for cracks perpendicular to
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the interface. The far-®eld stress intensity range, DK, was held constant throughout the test. For a crack
approaching the interface from the softer ferritic steel (soft±hard transition), the crack growth rate
dropped precipitously and the crack stopped some distance before the interface. On contrary, for a
crack approaching the interface from the harder austenitic steel (hard±soft transition), the crack
advanced through the interface. The crack growth rate remained roughly constant, except for some dis-
tance before the interface, where a slight increase of the crack growth rate was noted.

A practical application of this experimental ®nding has been reported in Suresh et al. (1993): The S±N
curve (stress amplitude versus number of fatigue cycles to failure) of a steel coated with a 400 mm thick
Cr2O3-layer is compared to that of a specimen that has a 50 mm thick soft Ni±5Al interlayer between
steel and a Cr2O3-coating. The S±N curve of the specimen with the interlayer lies signi®cantly above the
curve of the specimen without the interlayer. The reasoning is that without the interlayer, the crack
which is nucleated at the surface, grows unimpeded into the steel. The Ni±5Al interlayer, which is softer
than the steel, provides a soft±hard transition at the second interface and hinders the promotion of the
crack into the steel.

To rationalize the yield stress gradient e�ect, Sugimura et al. (1995) conducted ®nite element compu-
tations. They considered stationary, monotonically loaded cracks at various distances, t, from a bimater-
ial interface. The elastic constants are the same for both materials but the plastic properties di�er. The
loading was controlled by prescribing the remote stresses according to the elastic K-®eld solution. At
given loadings, the near-tip J-integral, Jtip, is compared to the far-®eld J-integral, Jappl=K 2(1ÿn 2)/E
(for plane strain conditions). The results demonstrate that the near-tip crack driving force deviates from
the far-®eld value when the crack approaches the interface. Fig. 1 gives an example, for an interface
between a (plastically hard) elastic material and a (soft) elastic±plastic material with a yield stress,
sy1=300 MPa, and a strain-hardening exponent, n = 1/N= 0.1. The ratio Jtip/Jappl is plotted against
Rp/t, with Rp as the maximum extension of the plastic zone in the soft material. The upper curve in Fig.
1 is for a hard±soft transition, i.e., the crack being in the elastic material; the near-tip crack driving
force, Jtip, is higher than Jappl. The lower curve is for a soft±hard transition; Jtip lies below Jappl.

Kim et al. (1997) have compared the yield stress gradient e�ect in a bimaterial to those in a bimater-
ials with interlayers. Three cases are studied: 1. no interlayer, 2. a homogeneous interlayer with a con-

Fig. 1. A crack perpendicular to an interface between an elastic and an elastic±plastic material: the ratio of the near-tip J-integral,

Jtip, to the far-®eld J-integral, Jappl, varies with the distance to the interface, t. Rp is the maximum extension of the plastic zone.

From Sugimura et al. (1995).
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stant yield stress, syi=1/2(sy1+sy2), 3. a graded interlayer with yield stresses between sy1 and sy2. The
yield stress gradient e�ect is found to be largest for Case 2 and smallest for Case 1, but the di�erences
are not large.

2. An analytical model of the yield stress gradient e�ect

In this section, a model is presented to explain why in the example presented above the near-tip crack
driving force di�ers from the far-®eld crack driving force when the crack approaches the interface.

Fig. 2. Double Cantilever Beam specimen made of a non-linear material with a yield stress that has a gradient in the x-direction.

Fig. 3. (a) Change of the potential energy, DPa, in a body during crack extension; the load, Q, and the yield stress, sy, are held con-

stant. (b) Change of the potential energy, DPy, due to an increase of the yield stress. (c) DPa+DPy is the total change of the poten-

tial energy during crack extension in a body with a yield stress gradient in crack growth direction.
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We consider a pre-cracked body of constant thickness, B, for example, a Double Cantilever Beam
(DCB) specimen that is subjected to a pair of loads, Q, applying at the end points, Fig. 2. The body
shall consist of a non-linear elastic material that has (during the loading) the same stress±strain response
as an elastic±perfectly plastic material with a yield stress sy. The potential energy of an elastic body is
given by (see Rice, 1968a):

P �
�
V

o dVÿ
�
ST

Tiui dS, �1�

where o denotes the strain energy density which is integrated over the volume V. ST is that portion of
the total surface, S, where the traction vector, T, is prescribed, and u is the displacement vector. As was
pointed out by Rice (1968b), the potential energy for a load-controlled test, P|Q, corresponds to the
(negative) area above the load±displacement (Q±q ) curve of the body [see Fig. 3(a)]:

PjQ � ÿ
�Q
0

q dQ: �2�

If the body were linear elastic, its potential energy would depend on the load, Q, the crack length, a,
the Young's modulus, E, and the geometry of the body. (a, E, and the geometry of the body determine
its compliance, f ). For our non-linear elastic body with the pseudo-yield stress, the potential energy
depends additionally on sy:

PjQ � P�Q, a, E, geometry, sy�: �3�
Note that at a given load, sy determines the radius of the pseudo-plastic zone, ry, and, accordingly,

the deviation of the Q±q curve from linearity. Throughout this paper, we assume that ry is small against
a and the specimen dimensions.

Now we conduct a thought experiment; the ®rst part of which is well known:

1. We let the crack in the body advance by an increment, Da, while the load, Q, sy, and the other par-
ameters in Eq. (3), are held ®xed. The potential energy of the body decreases by the amount DPa, see
Fig. 3(a). Rice (1968a) deduced that a certain line integral, the J-integral, is related to the potential
energy change,

J � ÿ 1

B

@P

@a

����
Q

, �4�

and that J is, thus, a measure of the crack driving force. The latter is true, however, only if the other
three parameters in Eq. (3), E, geometry and sy, remain constant during the crack extension.

2. We let the yield stress increase by an increment, Dsy, while Q, a, E and geometry are held constant.
The potential energy of our body will increase by the amount DPy, see Fig. 3(b). Hence, if the yield
stress of the body changes during crack extension, an additional term of the crack driving force will
appear, given by

Cy � ÿ 1

B

@P

@sy

����
Q,a

dsy

da
: �5�

Cy is hereafter referred to as the yield stress gradient term. In a body with a gradient in yield stress in
the direction of the crack growth, Fig. 3(c), the total change of the potential energy during crack exten-
sion is DPa+DPy. The total crack driving force, Ctot, is the sum of the terms in Eqs. (4) and (5):
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Ctot � ÿ 1

B

dP

da

����
Q,geometry

� J� Cy: �6�

The yield stress gradient term does not appear in a homogeneous body or in a body with a gradient
in yield stress when the crack grows perpendicular to the gradient direction, because in both cases dsy/
da = 0. Since @P/@sy|Q,a is positive, the yield stress gradient term is negative if the yield stress increases
in crack growth direction. The derivation of Eqs. (5) and (6) has been presented already in Kolednik
and Suresh (1998)2.

Irwin (1957) and Rice (1968a) demonstrated that the crack driving force is directly expressible in
terms of deformations and stresses at the crack tip. Hence, there is a direct relation between the total
crack driving force, Ctot, and the intensity of the crack tip ®eld which can be determined by evaluating
the line integral, Jtip, along a path close to the tip. This is the reason why Sugimura et al. (1995) found
Jtip-values which are larger (for Cy > 0) or smaller (for Cy < 0) than the far-®eld J-integral, Jappl.

From the derivation in this section, it becomes clear that a similar e�ect can be expected, if a crack
grows in the direction of a gradient in Young's modulus: Due to the occurrence of a modulus gradient
term, CE, the near-tip crack driving force di�ers from the applied far-®eld driving force, Jappl. It can be
shown that for a Double Cantilever Beam specimen Jappl+CE equals the new extension of the J-integral
introduced by Honein and Herrmann (1997).

In the following section, the model will be applied to quantify the yield stress gradient e�ect in (func-
tionally) graded materials, in materials with interfaces and interlayers, and in layered materials.

3. Applications of the model

3.1. Graded materials

A fracture mechanics specimen, for example, a double cantilever beam (DCB) specimen, shall consist
of a material with a smooth yield stress gradient in the crack growth direction, Fig. 2. We consider the
crack extension made in two steps, see Fig. 3: The ®rst step is crack extension at a ®xed loading for a
constant yield stress; the crack driving force is given by J. The second step is to change the yield stress
in the plastic zone according to the new tip position. To evaluate the total crack driving force,
Ctot=J+Cy, an analytical expression for the potential energy, P, of the specimen is needed. This ex-
pression is then derived, ®rst, with respect to the crack length to get the solution for J and, second, with
respect to the yield stress to estimate Cy.

At a given load, Q,

qel � 2

3

Qa3

EI
�7�

is the elastic component of the displacement. I denotes the moment of inertia of the cross-section of one
beam. We assume, for small-scale yielding conditions, Irwin's model of a circular plastic zone at the
crack tip, with its radius given by (Irwin, 1961)

ry � b
GE

s2y
: �8�

2 In Kolednik and Suresh (1998), Cy was denoted `plasticity gradient term'; this nomenclature has been changed to `yield stress

gradient term' to avoid a possible confusion with e�ect of strain gradient plasticity.
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sy is the yield stress at the center of the plastic zone. b=1/6p for plane strain conditions. G designates
the elastic strain energy release rate which is, for the DCB-specimen,

G � Q2a2

BEI
: �9�

A good estimate of the total displacement, qtot=qel+qpl, is provided by replacing in Eq. (7) the crack
length by the e�ective crack length, ae�=a+ry:

qtot � 2

3

Qa3eff

EI
� 2

3

Qa3

EI

�
1� ry

a

�3

: �10�

The potential energy is calculated by substituting qtot into Eq. (2) and integrating the area above the
Q±qtot curve. The result is

P � ÿ1
3

Q2a3

EI

 
1� 3

2

ry

a
�
�
ry

a

�2

�1
4

�
ry

a

�3
!
: �11�

Eq. (11), together with Eqs. (8) and (9), leads to the desired analytical expressions for J (by applying
Eq. (4), C (applying Eq. (5)), and Ctot (applying Eq. (6)):

J � Q2a2

BEI

 
1� 2

ry

a
� 5

3

�
ry

a

�2

�1
2

�
ry

a

�3
!

1G

�
1� 2

ry

a

�
, �12�

Cy � ÿQ
2a2

BEI

ry

sy

 
1� 4

3

ry

a
� 1

2

�
ry

a

�2
!

dsy

dx
1ÿ J

ry

sy

dsy

dx
�13�

Ctot1G

�
1� 2

ry

a
ÿ ry

sy

dsy

dx

�
1J

�
1ÿ ry

sy

dsy

dx

�
: �14�

The right-hand side extensions of Eqs. (12)±(14) are ®rst-order approximations. The di�erence
between J and G is an analogue to the di�erence between Ke� and K. Eq. (13) states that the yield stress
gradient term, Cy, is negative and the e�ective crack driving force is decreased, when the yield stress
increases in crack growth direction. This is similar to the e�ect of a modulus gradient (Delale and
Erdogan, 1983; Erdogan, 1995). The expression

ry

sy

dsy

dx can be seen as the relative variation of the yield
stress within the radius of the plastic zone. A numerical example shall assess the order of magnitude of
the yield stress gradient e�ect in FGMs: for dsy/dx = 50 MPa/mm, sy=500 MPa, ry=1 mm, we get Cy/
J=ÿ0.1.

Cy can be evaluated in the way outlined above for any other geometry, where an analytical or power-
series expression for the elastic compliance is known. In most cases, only the pre-factors within the par-
enthesis of Eq. (13) will be di�erent. For a deeply notched bend specimen, however, the compliance
depends on the ligament length, f0bÿ2. Here, the second-order approximation of Cy becomes

Cy1ÿ J
ry

sy

�
1� ry

b

�
dsy

dx
: �15�

The equation Cy(x )=const., i.e., Eq. (13) with ry substituted by Eq. (8), leads to a di�erential
equation that can be solved to optimize the variation of sy(x ) in a functionally graded material.
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Adopting the boundary conditions sy(0)=sy0 and sy(d )=syd, the solution becomes

sy�x� � sy0������������������������������������������
1ÿ x

d

"
1ÿ

�sy0

syd

�2
#vuut : �16�

An example is depicted in Fig. 13. The corresponding size of the yield stress gradient term is given by

Cy1ÿ b
2
J
ryd

d

"
1ÿ

�sy0

syd

�2
#
: �17�

It should be stressed that the model presented in this section uses a constant yield stress for evaluating
the plastic strain energy. The model should be applied only for cases where the relative variation of the
yield stress within the plastic zone is small. The other limiting case is a sudden jump of the yield stress
at an interface. This case is treated in the following section.

3.2. Cracks at bimaterial interfaces

In this section, an analytical expression for the yield stress gradient e�ect at a bimaterial interface is
sought. The idea is the following: When the crack tip plastic zone is far from the interface, the plastic
strain energy remains constant during an incremental crack extension (at a constant loading by a remote
K-®eld) and the e�ective crack driving force is given by J. When the plastic zone touches the interface,
an incremental crack extension produces a change in the total plastic strain energy of the body.
Therefore, a yield stress gradient term appears, as in a graded material.

The procedure of the derivative is the following: First, the plastic zone model is introduced. Then, the
plastic strain energy, Wpl, is determined for a plastic zone remote from the interface and for a plastic

Fig. 4. The plastic zone of a crack near a bimaterial interface dividing Material 1 with yield stress sy1 from Material 2 with yield

stress sy2.

O. Kolednik / International Journal of Solids and Structures 37 (2000) 781±808788



zone intersecting the interface. Subsequently, the potential energy, and its total derivative, Ctot, can be
evaluated for arbitrary crack tip locations.

We consider a bimaterial interface dividing Material 1, on the left-hand side, from Material 2 on its
right-hand side. Both materials have an elastic±perfectly plastic response with identical elastic properties
and with yield stresses sy1 and sy2, respectively. A crack is located normal to the interface at a distance,
t (Fig. 4). The body is loaded monotonically by remote stresses according to the elastic K-®eld solution.

Circular plastic zones are adopted. Their center is located at the crack tip and their radius, ry, is given
by Eq. (8). The plastic strain energy of the plastic zone is

Wpl � B

�ry

0

oy�r�2pr dr: �18�

The speci®c plastic strain energy per unit volume at a given radius, r, within the plastic zone shall
have a rÿ1-singularity of the form

oy � g
r
: �19�

This type of singularity can be found in the HRR crack tip ®eld solution (Hutchinson, 1968; Rice and
Rosengren, 1968). The size of the constant, g, is determined by equating Wpl given by Eq. (18) to the
plastic work, that can be found by integrating the area below the load vs. plastic displacement curve
(Q±qpl curve). Again taken a DCB-specimen as an example, the integration yields (a ®rst-order approxi-
mation is su�cient)

g � 3

4p
G: �20�

For other specimen geometries, the pre-factor in Eq. (20) can be slightly di�erent. By inserting Eqs.
(19) and (20) into Eq. (18), the plastic strain energy remote from the interface, t> ry or t < ÿry, is
found:

Wpl � 3

2
BGry � 3

2
bB

G 2E

s2y
: �21�

Fig. 4 shows a plastic zone intersecting the interface for ry2 > t > ÿry2 and for sy2 > sy1. The inter-
face cuts o� segments from the two plastic zones. The plastic strain energies in the two truncated plastic
zones on either side of the interface can be integrated. The result is:

Wpl1�t� �

8>>>>>>>><>>>>>>>>:

3

2
BGry1 for t > ry1

3

2p
BGry1

0@1

2
p� arcsin

�
t

ry1

�
� t

ry1

arctanh

������������������������
1ÿ

�
t

ry1

�2
s 1A for ry1rtrÿ ry1

0 for t < ÿ ry1

�22�
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Wpl2�t� �

8>>>>>>>><>>>>>>>>:

0 for t > ry2

3

2p
BGry2

0@1

2
pÿ arcsin

�
t

ry2

�
ÿ t

ry2

arctanh

������������������������
1ÿ

�
t

ry2

�2
s 1A for ry2rtrÿ ry2

3

2
BGry2 for t < ÿ ry2

: �23�

The total plastic strain energy is the sum,

Wpl�t� �Wpl1�t� �Wpl2�t�: �24�

The simplest way to derive an analytical expression for the potential energy, P(t ), is to use Eq. (21)
for evaluating an e�ective total plastic zone radius,

ry�t� �
2

3

Wpl�t�
BG

�25�

and substituting ry(t ) into Eq. (11). The partial derivative of P(t ) with respect to a leads to the J-inte-
gral. In analogy to Eq. (12),

J�t�1G

�
1� 2

ry�t�
a

�
: �26�

Since the potential energy is a function P(t )=P(Q,a,E,ry(t )), the yield stress gradient term is given by

Cy�t� � ÿ 1

B

@P

@ry�t�
dry�t�

dt

dt

dx
: �27�

Note that dt/dx=ÿ1. For convenience, the solution is split into two parts: Cy1(t ) is the part that orig-
inates from the plastic zone in Material 1; Cy2(t ) originates from the plastic zone in Material 2:

Cy1�t� �

8>>>>>><>>>>>>:

0 for t > ry1

ÿ G

2p

0@arctanh

������������������������
1ÿ

�
t

ry1

�2
s 1A for ry1rtrÿ ry1

0 for t < ÿ ry1

�28�

Cy2�t� �

8>>>>>><>>>>>>:

0 for t > ry2

G

2p

0@arctanh

������������������������
1ÿ

�
t

ry2

�2
s 1A for ry2rtrÿ ry2

0 for t < ÿ ry2

: �29�

The total yield stress gradient term results as the superposition of the two partial components:
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Cy�t� � Cy1�t� � Cy2�t�: �30�

In Eqs. (26), (28) and (29) all but the ®rst-order terms in ry(t )/a are neglected. For the exact solution,
G should be replaced by

G

 
1� 4

3

ry�t�
a
� 1

2

�
ry�t�
a

�2
!
:

Cy1(t ) describes the yield stress gradient term if Material 2 is elastic; the dashed line in Fig. 5(c) shows
the maximum possible yield stress gradient e�ect for a given Material 1. The analogue is true for Cy2(t )
[dotted line in Fig. 5(c)]. To a ®rst-order approximation, Cy1(t ) scales with G (or J ). Apart from this,
the functional value depends only on t/ry1. That means that the width over which Cy1(t ) has a certain
size, is a linear function of G and the plastic zone radius, ry1. The singularities at t = 0 appear because
the plastic strain energy density, oy, becomes in®nite at the center of each plastic zone Eq. (19). The
singularities could be avoided by introducing a maximum value of oy.

If both materials are elastic±plastic, the two singularities of opposite signs partly compensate and the
resulting yield stress gradient term remains ®nite. For ry1=ry2, the two singularities cancel completely
and Cy(t )=0. Fig. 5 presents a soft±hard transition for sy2=2sy1. During crack extension, the crack tip

Fig. 5. A soft±hard transition at a bimaterial interface for sy2=sy1/2. (a) Variation of the plastic strain energy, Wpl, as a function

of the distance of the crack tip from the interface, t. (b) The e�ective far-®eld J-integral, J. (c) The yield stress gradient term, Cy.

(d) The total crack driving force, Ctot. B is the specimen thickness, G the applied strain energy release rate, and ry1 the plastic zone

radius in Material 1.
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travels in each ®gure from the right-hand side to the left-hand side. Fig. 5(a) shows the variation of the
plastic strain energy, Wpl; the curves of the partial terms, Wpl1 and Wpl2, are also plotted. The e�ective
far-®eld J-integral, the partial and total yield stress gradient terms, and the total crack driving force are
plotted in Fig. 5(b,c,d). Fig. 5 demonstrates that a soft±hard transition with sy2=2sy1 produces a strong
negative yield stress gradient term which reduces the total crack driving force by up to 33 percent.

Fig. 6 presents a hard±soft transition for sy2=1/2sy1. When the crack approaches the interface, Cy(t )
is positive and the total crack driving force is enhanced.

Fig. 7. A soft±hard interface transition: (a) Yield stress gradient term for di�erent yield stress ratios. (b) Maximum yield stress gra-

dient term, Cy,max, and yield stress gradient term at the interface, Cy(t= 0), as functions of the ratio of the plastic zone radii.

Fig. 6. A hard±soft transition at a bimaterial interface for sy2=1/2sy1. The yield stress gradient term, Cy, is positive and enhances

the total crack driving force.
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Fig. 7(a) compares the yield stress gradient term for a soft±hard transition with ®xed sy1 and di�erent
yield stress ratios, sy2/sy1. The yield stress gradient term has its maximum,

��Cy,max

�� � G

2p

0@arctanh

�����������������������������
1ÿ

�
ry,hard

ry,soft

�2
s 1A, �31�

at t=2ry,hard. (ry,hard denotes the plastic zone radius of the harder material). The evaluation of Cy at
the position of the interface yields

Cy�t � 0� � G

2p
ln

�
ry2

ry1

�
: �32�

Fig. 7(b) can be used to estimate the maximum size of the yield stress gradient term for a given bima-
terial combination: Cy,max and Cy(t= 0) are drawn against the ratio of the plastic zone radii.

The analogy between the yield stress gradient e�ect and the e�ect of a modulus gradient at an inter-
face is obvious: a soft±hard transition of either the yield stress or the Young's modulus leads to a
decrease of the e�ective crack driving force; a hard±soft transition increases Ctot.

3.3. The yield stress gradient e�ect at interlayers

3.3.1. Elastic interlayer in elastic±plastic base material
First we consider the e�ect of an elastic interlayer of thickness d in an elastic±plastic material (Fig. 8).

syb is the yield stress and ryb the plastic zone radius of the base material. The interlayer cuts o� a strip
of width d from the plastic zone. The plastic strain energy of the material on the left-hand side of the
interface is given by Eq. (22), with ryb inserted instead of ry1. The plastic strain energy on the right-hand
side of the interlayer is found by replacing ry2 and t in Eq. (23) with ryb and (t+d ). The yield stress gra-
dient term becomes

Fig. 8. Plastic zone of a crack near an elastic interlayer (IL) in an elastic±plastic base material.
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In Fig. 9, the variation of the plastic strain energy and the yield stress gradient term is drawn for two
di�erent d/ryb-ratios. The Cyb±t curve shows two opposite singularities of equal size appearing at t = 0

Fig. 9. Elastic interlayer in an elastic±plastic base material. (a) Variation of the plastic strain energy, Wpl, and (b) of the yield stress

gradient term, Cy, for a thick interlayer. (c,d) Variation of Wpl, and Cy for a thin interlayer. The minimum crack driving force

appears at the ®rst interface.
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and t=ÿd. The yield stress gradient term is negative when the crack approaches the ®rst interface; Cy is
positive near the second interface. For thick interlayers, d/rybr2, the e�ect of the interlayer is that of
two consecutive interfaces. For thin interlayers, the two Cy-peaks come close and interfere. The yield
stress gradient e�ect increases with increasing d/ryb-ratio, but only up to d/ryb 1 1. No signi®cant
enhancement is observed for thicker interlayers. For d/rybr1, Eq. (31) or Eq. (32) can be used to esti-
mate the maximum size of the yield stress gradient term.

3.3.2. Elastic±plastic interlayer in elastic base material
The other limiting case is that of an elastic±plastic interlayer (thickness d, yield stress syL, plastic zone

radius ryL) in an elastic matrix. The solution is similar to that of the foregoing case; however, the sign of
the e�ect is di�erent: The ®rst interface attracts the crack, the second interface repels the crack. The
equations are:

Fig. 10. Elastic±plastic interlayer in an elastic base material. (a) Variation of the plastic strain energy, Wpl, and (b) of the yield

stress gradient term, Cy, for a thick interlayer. (c,d) Variation of Wpl, and Cy for a thin interlayer. The minimum crack driving

force appears at the second interface.
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Fig. 10 collects Wpl±t and CyL±t curves for two d/ryL-ratios. Again, the maximum size of the yield
stress gradient term increases with increasing d/ryL, but not beyond d/ryb=1.

3.3.3. The general case
In general, both the base material and the interlayer deform plastically. The solution for the yield

stress gradient term can be easily found as the superposition of the preceding two limiting cases:

Cy�t� � Cyb�t� � CyL�t� �35�
One example is presented in Fig. 11, for a hard interlayer in a soft matrix: ryL/ryb=1/10, d/ryL=0.8.

The curve is similar to the case of the elastic interlayer, but the two opposite singularities are truncated
because of the plasticity of the interlayer. The interlayer thickness is not yet optimal; the maximum yield
stress gradient term would be somewhat larger, if the interface were thicker.

We have seen that both hard and soft interlayers produce a region of negative yield stress gradient
term. This region lies near the ®rst interface for a hard interlayer, near the second interface for a soft
interlayer. The size of the yield stress gradient term depends primarily on the yield stress ratio and the
ratio of the plastic zone radius of the softer material versus the interlayer thickness. For a large e�ect,
the latter ratio should be 1 or higher.

Fig. 11. Variation of the yield stress gradient term, Cy, for a hard interlayer in a soft base material. The minimum crack driving

force appears near the ®rst interface.
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3.3.4. Interlayers at a bimaterial boundary
The previous sections have dealt with interlayers lying within one type of base material. In a vast

number of technical applications, a hard surface layer protects a softer base material (sy,hard>>sy,soft). If
the surface layer contains a crack, a large positive yield stress gradient term will appear. The following
questions should be answered in this section: Can interlayers between surface layer and base material
reduce the total crack driving force? What are the optimum yield stress and the optimum thickness of
such interlayers?

First we consider a single interlayer. The question about the optimum yield stress, syL, of the inter-
layer can be answered immediately: The maximum yield stress gradient term at an interface depends on
the ratio of the plastic zones, Eq. (32) and hence, on the ratio of the yield stresses. Accordingly, the
yield stress of the interlayer must be the geometric mean value of the bimaterial yield stresses, syL �����������������������sy,hardsy,soft
p

, to guarantee that the yield stress gradient terms at both interfaces are equal in size. With
syL known, the Cy±t curves can be drawn and arranged for arbitrary interlayer thicknesses, d. If d is

Fig. 12. (a) A high, positive yield stress gradient term, Cy, appears at a bimaterial transition from a hard surface layer to a soft

base material. (b) An interlayer with an intermediate yield stress reduces the maximum value of Cy. (c) Behind an interlayer that is

softer than the base material, a bene®cial zone of negative Cy appears.
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smaller than the plastic zone radius of the soft base material, ry,soft, the interlayer brings no relief; Cy,max

may be even larger than without interlayer. However, the yield stress gradient term is reduced signi®-
cantly, if dr(ry,soft+ry,hard). To present an example, Fig. 12(a) depicts a bimaterial transition for
sy,hard=4sy,soft without interlayer; the maximum yield stress gradient term amounts Cy,max /G= 0.55.
Fig. 12(b) shows the situation with an interlayer having syL=2sy,soft, d=ry,soft+ry,hard. Compared to the
situation without interlayer, the yield stress gradient term decreases by 40 percent, Cy,max/G = 0.33.

The maximum yield stress gradient term can be further reduced, if several interlayers are inserted
between surface layer and base material; however, it must be guaranteed that each interlayer is thick
enough. From the preceding paragraph it can be deduced that the thickness of each layer should be at
least the sum of the plastic zone radii of the two neighboring layers. The following equations, which
have been presented already in Kolednik and Suresh (1998), give the optimum yield stress, siyL, and
thickness, di, of the ith interlayer, if n interlayers between hard and soft material have been introduced:

siyL � sy,hard

� sy,soft

sy,hard

� i
n�1 �36�

and

di � ry,hard

�sy,hard

sy,soft

�2
iÿ1
n�1

"
1�

�sy,hard

sy,soft

� 4
n�1

#
: �37�

If the conditions of Eqs. (36) and (37) are met, the maximum yield stress gradient term is

Table 1

Bimaterial transition between a hard surface and a soft base material for sy1/sy2=4: the maximum yield stress gradient term,

Cy,max, decreases with increasing numbers of layers, n; the optimum total width of the transition zone, sdi, increases. (G is the

applied strain energy release rate and ry2 the plastic zone radius in the base material)

n 0 1 2 3 4 5 6 7 8

Cy,max/G 0.55 0.33 0.25 0.21 0.18 0.165 0.15 0.14 0.13
1
ry2

Pn
i�1di 0 1.06 1.62 2.19 2.71 3.41 4.03 4.77 5.32

Fig. 13. Optimum transition between a hard surface layer and a soft base material consisting of 8 interlayers; Cy,max=0.13G. The

dashed line indicates a smooth yield stress gradient with Cy=0.08G.
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Eqs. (36) and (37) allow the design of optimum bimaterial transitions. Table 1 lists for sy,hard=4sy,soft
the maximum size of the yield stress gradient term, Cy,max/G, and the total interlayer thickness related to
the plastic zone radius of the soft base material, 1

ry,soft

Pn
i�1 di, as a function of the number of interlayers,

n. Fig. 13 presents, as an example, the optimum yield stress variation for 8 interlayers. The solution of
the di�erential equation for a smooth transition, Eq. (16) is indicated as a dashed line. It is noteworthy
that the smooth transition would yield Cy/G 1 0.08, compared to the Cy,max/G = 0.13 for the 8 inter-
layers with abrupt changes in sy.

Very interesting is the case of a single interlayer which is softer than the base material. Fig. 12(c) pre-
sents the situation for syL=sy,soft/2, d=ryL/2=2ry,soft. At the ®rst interface, Cy is almost the same as for
the case without interlayer, but behind the second interface a zone of negative Cy appears which reduces
the propensity of the crack to grow deeper into the base material. Note that the interlayer must be thick
enough to be e�ective: the interlayer depicted in Fig. 12(c) is too small; the optimum thickness is d=ryL.
The bene®t of such a soft interlayer has been shown experimentally by Suresh et al. (1993) for a Cr2O3-
coated steel with a Ni±5Al interlayer, see Section 1.2.2.

3.4. Layered materials

Consider a layered material consisting of two phases; ry1 and ry2 are the plastic zone sizes and d1 and
d2 the layer thicknesses. If the plastic zone radius of the softer phase, ry,max, is much larger then both
the periodicity of the material, d1+d2, and the minimum layer thickness (of either the soft or the hard
phase), dmin, the yield stress gradient e�ect will be negligible. On the contrary, a signi®cant e�ect will
appear, if the maximum plastic zone radius has the same order of magnitude as the minimum layer
thickness. For 2ry,max R dmin, the situation resembles those in two alternative bimaterial interfaces; Cy(t )
is evaluated with Eqs. (28) and (29). For other cases, the equations which have been developed in
Section 3.3 can be combined to deduce the variation of the yield stress gradient term.

4. Discussion

4.1. Some remarks on the applied model

In the previous section, a simple energetically-based model has been developed to evaluate the yield
stress gradient term for materials with smooth and abrupt variations in yield stress. The advantage of
the model is that it provides analytical expressions of the yield stress gradient term which are useful for
the optimization of structural components with respect to their fracture properties.

The model has a few de®ciencies. The ®rst de®ciency is that it does not allow for the strain hardening
of materials. It is clear that a yield stress gradient term will be induced also on an interface of two ma-
terials with equal yield stresses but di�erent strain hardening exponents. It should be possible to adapt
the model for power-law hardening materials, e.g., by applying the EPRI-approach, Kumar et al. (1981),
but this has not been done yet. An engineering approximation to assess the yield stress gradient term
would be to insert into the equations an average ¯ow stress, �s flow, instead of the yield stress. Unless a
more sophisticated solution is known, the mean value between the yield stress and the ultimate tensile
strength, su, could serve as a rough estimate for �s flow.

A second shortcoming of the model is that it assumes a circular plastic zone with its center at the
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crack tip. In reality, the plastic zone has a more complicated shape with a forward orientation, i.e., it
extends much farther towards the crack growth (positive x-) direction. The consequence is that the
Cy(t )-curve for a crack approaching a bimaterial interface, e.g., Fig. 5(c), becomes non-symmetrical with
respect to the interface: the branches of the curves for positive t will be longer than those for negative t,
see also Section 4.2.

It should be also remarked that the model does not consider mis®t strains which will appear when the
plastic zone intersects the interface between materials with di�erent yield stresses. It is expected that the
e�ect of such mis®t strains on the yield stress gradient e�ect will not be large: they will tend to decrease
the plastic zone size near the interface on the softer side, and increase it on the harder side; however, the
sum of the plastic strain energy will not change a lot.

4.2. Comparison to ®nite element solutions

Fig. 14 compares the predictions of the current analytical model to the results of the ®nite element
(FE) computations by Sugimura et al. (1995), see Section 1.2.2. It might be interesting that the compu-
tations were made using both a J2 deformation theory of plasticity and a J2 (rate independent) ¯ow the-
ory of plasticity with isotropic hardening (N = 10). For Jtip the two theories yielded identical solutions,
for remote paths the solutions di�ered only by 2% or less. Fig. 14(a) considers a bimaterial interface
between an elastic material and an elastic±plastic material with a yield stress, sy. The ordinate of the dia-
gram scales the ratio of the near-tip J-integral to the far-®eld J-integral, Jtip/Jappl, which is equivalent to
the ratio Ctot/J. The abscissa measures the plastic zone radius in the softer material related by the dis-

Fig. 14. Comparison between the predictions of the current analytical model and ®nite element computations by Sugimura et al.

(1995) for bimaterial transitions. The ratio of the near-tip J-integral to the applied far-®eld J-integral, Jtip/Jappl, is plotted against

the plastic zone radius in the softer material related by the distance to the interface, ry/t. (a) The harder material is elastic. (b) The

harder material has twice the yield stress of the softer material.
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tance to the interface, ry/t, drawn in a logarithmic scale (base 10). According to the analytical model
(solid line), Jtip equals Jappl up to the point lg

ry

t � 0, where the plastic zone touches the interface. Then
the curve bifurcates: the lower curve pertains to the transition soft±hard, when the crack lies in the elas-
tic±plastic material; the upper curve pertains to the transition hard±soft. In the FE model (dashed line),
the yield stress gradient e�ect is initiated at larger distances from the interface because the actual maxi-
mum extension of the plastic zone in the crack growth direction, Rpx, is larger than the plastic zone
radius, ry, given by the Irwin model. Sugimura et al. (1995) have reported that the plastic zone reaches
the interface at K

sy

��
t
p � 2:5; accordingly, Rpx=3.0ry).

For the hard±soft transition, the results of the analytical model and the FE model agree very well.
The predictions of the two models begin to deviate when the plastic zone size becomes large. The reason
might be the small-scale yielding assumption of the analytical model. For the soft±hard transition, the
FE model predicts a smaller yield stress gradient e�ect than the analytical model. In both models, Jtip
shows a singularity at the interface, i.e., for ry/t41.

If the harder material is not elastic, but has twice the yield stress of the softer material [Fig. 14(b)],
the analytical model yields the same Jtip/Jappl-curves up to lg

ry

t � lg 4 � 0:60, where Cy reaches its maxi-
mum [see Fig. 5(c)]. For higher ry/t-values, Jtip/Jappl decreases slightly and attains a constant value
towards the interface. The FE solution is similar to those for the case with the harder material being
elastic. Again, the curves indicate singularities of Jtip at the interface. For real elastic±plastic materials,
such singular Jtip-values are unrealistic.

The major di�erence between the analytical model and the FE model is that the analytical model pro-
duces symmetric e�ects in the respect whether the crack is located either in the harder or the softer ma-
terial; the FE model not. The reason is that when a crack propagates within the softer material, its
plastic zone does not simply translate with the crack tip, but it also changes its shape in front of an
interface. Thus, the actual change of the plastic energy is a little bit less than predicted by a simple trans-
lation model, and the yield stress gradient term is overestimated.

In summary, it can be stated that the two models ®t well as long as the ratio ry/t does not become too
high. The analytical model becomes inaccurate when the conditions of small-scale yielding are not met.
The FE model fails in yielding reasonable estimates for the maximum or minimum near-tip crack driving
forces at interfaces.

4.3. Crack driving force and fracture toughness

The behavior of a crack within a (plastically) inhomogeneous body depends on the ratio between the
local crack driving force and the local crack growth resistance: the crack extends if the local crack driv-
ing force equals or exceeds the crack growth resistance. We have seen that, given a constant applied
crack driving force, the near-tip crack driving force, Ctot, varies signi®cantly with the distance of the
crack tip from an interface, t. The local crack growth resistance will also vary, but probably in a di�er-
ent manner. Hence, we do, per se, not know how the local fracture properties of a body vary near a
bimaterial interface.

A de®nite answer to this question would require experiments where the local fracture initiation tough-
ness and the local crack growth toughness are determined as a function of the distance, t. This could be
done by measuring CODi and the crack tip opening angle, CTOA, by stereoscopic analyses and the ap-
plication of a new digital image analysis system (Stamp¯ et al., 1996; Stamp¯ and Kolednik, 1998). Such
data are not available now; however, we can try to guess a preliminary answer:

Imagine a crack at some distance from an interface dividing a low-strength from a high-strength ma-
terial. We measure the crack driving force in terms of the crack tip opening displacement, COD, and the
fracture initiation toughness in terms of the critical crack tip opening displacement, CODi.
Ctot, which corresponds to the near-tip J-integral, Jtip, determines the stresses and deformations within
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the local crack tip ®eld and, hence, also the crack tip opening displacement, COD. As soon as the plastic
zone touches the interface, COD will begin to decrease. Pippan and co-workers estimated the variation
of COD for cracks near interfaces (Pippan and Riemelmoser, 1999) and at interlayers (Pippan et al.,
1998), applying a Dugdale model.

The crack growth resistance of a material depends primarily on the conditions that prevail within the
process zone directly ahead of the blunted crack tip. These conditions determine either the microstruc-
tural processes, void nucleation, growth, and coalescence, of a microductile fracture, or the attainment
of a critical normal stress for a cleavage fracture.

Since the size of the process zone is one order of magnitude smaller than the plastic zone, we expect
that CODi remains constant as long as the process zone is far from the interface, ryrt>>lpz. As the driv-
ing force, COD, decreases when the crack approaches the interface, we notice a real improvement of the
fracture properties: the material in front of a soft±hard transition behaves tougher.

4.4. In¯uences of the stress state and the T-stresses

Larsson and Carlsson (1973) and Rice (1974) have found that even for small-scale yielding conditions
the size of the plastic zone is in¯uenced by the size of the second (r 0-) term of the asymptotic stress ®eld
solution for a sharp crack in an elastic material. These stresses, called T-stresses, are non-negative for
high-constraint situations, such as in deeply notched bend or Compact Tension specimens. Large nega-
tive T-stresses occur in specimens with shallow cracks or, e.g., in Center Cracked Tension specimens.

Both the stress state and the T-stresses a�ect the plastic zone size and the plastic strain energy and,
accordingly, the yield stress gradient term. Their in¯uence can be easily assessed for with our model:

The stress state can be allowed for by adjusting the constant b in Eq. (8) from b=1/6p for plane
strain conditions to b=1/2p for plane stress conditions. The e�ect of the T-stresses can be estimated by
introducing a T-stress dependent pre-factor, l, into the equation of the plastic zone radius:

ry � l
�
T

sy

�
b
GE

s2y
: �39�

Rice (1974) has derived a model to estimate the maximum size of the plastic zone, Rp, for di�erent T/
sy-values; in Sugimura et al. (1995) Rp-values have been tabulated for a strain hardening exponent,
n = 1/N= 0.1. From this table, l-values can be generated, bearing in mind that l(0)=1 and that for
T= 0 the plastic zone size must be twice the plastic zone radius, Rp=2ry. Table 2 lists l-values for
di�erent T/sy-ratios.

Negative T-stresses, as well as plane stress conditions instead of plane strain conditions, enhance the
yield stress gradient term in a material with a smooth yield stress gradient, see Eq. (13). At interfaces,
negative T-stresses increase the regions over which a certain yield stress gradient term prevails because
they increase the plastic zone radius; however, they do not enhance the maximum yield stress gradient
term, see Eqs. (26) and (28). At interlayers, the e�ect of the T-stresses depends on the ratio of the inter-
layer thickness to the maximum plastic zone radius, d/ry,max. The yield stress gradient term can even

Table 2

In¯uence of the T-stress on the plastic zone size; l gives the ratio of the plastic zone size relative to those for T= 0

T/sy ÿ0.75 ÿ0.5 0 0.5 0.75

Rp
s2y
GE 0.88 0.35 0.15 0.13 0.24

l 5.9 2.3 1 0.87 1.6
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drop, if due to the increase in the plastic zone size the d/ry,max-ratio falls clearly below 1. A similar ob-
servation will be made in layered materials, if ry,max becomes signi®cantly larger than the periodicity of
the material.

Another conclusion can be drawn: a gradient in the hydrostatic stress state will change the plastic
strain energy of the plastic zone. Thus, a yield stress gradient term will be induced by a T-stress gradi-
ent, e.g., by a transition from plane strain to plane stress conditions near a free surface, or by a gradient
in residual stresses.

4.5. The yield stress gradient e�ect in fatigue

It has been noted above that the ratio of the plastic zone radius to some microstructural length e�ects
the size of the yield stress gradient e�ect. For instance, if in layered materials the plastic zone size is
much larger than the periodicity of the material, the yield stress gradient term is negligible. Therefore,
the yield stress gradient e�ect is in many cases more important in fatigue where the plastic zone sizes are
much smaller than in monotonically loaded structures.

The behavior of fatigue cracks in materials with smooth yield stress gradients or in materials with
interfaces or interlayers can be (qualitatively) predicted with our model: At a transition soft±hard, a
positive cyclic yield stress gradient term diminishes the cyclic crack driving force; the crack growth rate
decreases and the crack might even stop as has been seen in the experiments by Suresh et al. (1992). The

Fig. 15. Fatigue experiments by Pippan and Flechsig (1999). (a) Crack growth rate, da/dN, in Armco±iron against the distance, t,

to a hard V155 steel interlayer. The cracks stop near the ®rst interface. (b) Crack growth rate in V155 steel near a soft Armco±iron

interlayer. The cracks stop near the second interface.
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positive e�ect of a soft Ni±5Al interlayer between a steel and the Cr2O3-coating on the S±N curve,
which was reported in Suresh et al. (1993), ®nds its explanation in Section 3.3.4.

Pippan and Flechsig (1999) conducted experimental studies on the behavior of fatigue cracks near
bimaterial interfaces and interlayers. The specimens, which were di�usion bonded under high pressure,
consist of Armco iron (sy=141 MPa) and a quenched and tempered ferritic steel V155 (sy=530 MPa).
The specimens were fatigued at constant stress intensity ranges, DK= 25, 18, and 10 MPa/m2; the crack
propagation rate was measured optically on both sides of the specimens. Hard±soft and soft±hard bima-
terial transitions were studied, as well as Armco-interlayers in steel and steel interlayers in Armco iron.
The thickness of the interlayers was varied. The predictions of the model ®t to the experimental results:
The fatigue crack slows down, stops and bifurcates into two (near-) interface cracks at a soft±hard bima-
terial interface; the crack velocity increases near the interface at a hard±soft transition.

Both a steel interlayer in Armco iron and a soft Armco iron interlayer in steel prevent the crack from
proceeding further into the specimen. In both cases, the crack bifurcates into two interface cracks. As it
is predicted by the model, the crack stops at the ®rst interface when a hard steel interlayer is embedded
in Armco iron, see Fig. 15(a). It is worth to mention that the situation for DK= 25 MPa/m2 is similar
to those shown in Fig. 11: the ratio of the cyclic plastic zones in the two materials is approximately
1:10, and the thickness of the Steel V155 interlayer is a little bit smaller than the cyclic plastic zone
radius in the base material.

For an Armco interlayer in steel, the crack stops in front of the second interface which has a soft±
hard transition, Fig. 15(b).

4.6. Further implications of the yield stress gradient e�ect

4.6.1. Cracks parallel to interfaces
Imagine several specimens where a crack is growing parallel to an interface between a plastically soft

and hard material. The specimens are otherwise identical (geometry, crack length, etc.), but the distance,
t, between crack and interface is di�erent. The plastic zone sizes in the two materials are denoted ry,hard
and ry,soft. Comparing the potential energy of the specimens at the same load, we will ®nd that the speci-
mens with the largest plastic zones, i.e., those with a crack in the soft material remote from the interface,
have the smallest potential energy.

Now consider a specimen with a crack in the hard material, Fig. 16. We assume a meandering crack;
the crack extension steps are sometimes inclined towards the interface, sometimes away from the inter-
face. If t is larger than ry,soft, the crack will always feel the same potential energy and it will steadily

Fig. 16. Plastic zone for a crack in a hard material, parallel to an interface to a soft material. The crack will change its path and

curve towards the interface.

O. Kolednik / International Journal of Solids and Structures 37 (2000) 781±808804



grow at the same distance from the interface. For t R ry,soft, the crack feels a smaller potential energy if
the crack extension step is directed towards the interface. Due to the gradient dWpl/dt, the crack driving
force for a kinked crack with a kink angle a towards the interface is slightly larger than those for a kink
with ÿa. Therefore, the crack will change its path and curve towards the interface. For a perfect inter-
face with a high interface toughness, the crack will cross the interface to reach the position of minimum
potential energy at t=ÿry,soft. This is the equilibrium position for all initial cracks lying at |t| R ry,soft.

In several papers, Tschegg and co-workers studied the behavior of cracks parallel to bimaterial inter-
faces (Tschegg et al., 1990, 1991; Tschegg et al., 1993; Tschegg et al., 1994). The bimaterials were pro-
duced by explosion cladding. Di�erent material combinations were used: austenitic and ferritic steel,
aluminium and ferritic steel, or copper and ferritic steel. Tests were made on 3-Point Bend specimens
under monotonic (Tschegg et al., 1993; Tschegg et al., 1994) and cyclic loading (Tschegg et al., 1990,
1991). If the interface toughness was high enough, exactly the behavior was observed as has been
described above, see Figs. 7 and 8 in Tschegg et al. (1994).

4.6.2. On the in¯uence of the microstructure on the crack path
The results of Eq. (3) can be generalized to improve the understanding how microstructural features

in¯uence the microscopic behavior of cracks. Consider, instead of hard or soft interlayers, particles that
have a high or low yield stress compared to the base material. When a crack comes near to the particles,
the yield stress gradient e�ect will reduce or increase the local crack driving force. The e�ect will be sig-
ni®cant when the particle size has the same order of magnitude as the plastic zone in the base material.

A high-strength second-phase particle is very often attended by a corona of high constraint around it.
The gradient in hydrostatic stress in the base material around the particle will amplify the yield stress
gradient e�ect, as has been described in Section 4.4. The primary reason for the ampli®cation is that the
e�ective radius of the particles for producing a yield stress gradient e�ect is increased.

When a crack is approaching a hard particle, the yield stress gradient term reduces the total crack
driving force; when the crack leaves the particle or the high-constraint corona, the total crack driving
force is enhanced. However, in many cases the crack will not go through the particle. A meandering
crack that approaches the high-constraint corona below its center will feel a lower crack driving force
for a kink with a positive kink angle, a, than for a kink with ÿa. Hence, the crack will deviate from its
original path and circumvent the particle. Analogously, a low-strength particle or a void will attract the
crack.

In general, the Young's modulus of a particle will also di�er from the matrix value. As has been
noted in Section 2, the modulus gradient will induce an additional crack driving force component. The
modulus gradient term has the same sign as the yield stress gradient term: it is negative for a transition
compliant±sti�, and positive for a transition sti�±compliant. The total e�ect of particles on the local
crack driving force results as an interaction of both the plasticity and the modulus gradient e�ect.

The yield stress gradient e�ect a�ects strongly the crack path in inhomogeneous elastic±plastic ma-
terials. The general rule, ``A crack wants to propagate so that the total potential energy of the system
becomes a minimum'', seems to be equivalent to the more perceptive rule, ``A crack wants to propagate
so that the dissipated energy becomes a maximum''.

5. Summary

In elastic±plastic materials, a plastic zone appears at the tip of a loaded crack. Whenever the plastic
strain energy in the plastic zone changes in the direction of the crack extension, the crack driving force
near the tip becomes di�erent from the nominally applied far-®eld value. This e�ect is termed yield stress
gradient e�ect. In this paper, an analytical model has been presented to quantify the e�ect for small-
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scale yielding conditions. The model is based on global energy considerations. The e�ect of T-stresses
and of plane strain or plane stress conditions can be taken into account.

It is demonstrated that in materials with a smooth gradient in yield stress an additional crack-driving
force term appears, the yield stress gradient term, Cy. Cy is positive, i.e., it enhances the e�ective crack
driving force when the yield stress decreases in crack growth direction. On the contrary, an increase of
the yield stress induces a negative yield stress gradient term which diminishes the e�ective crack driving
force. The size of Cy is proportional to the applied far-®eld crack driving force, the yield stress gradient
and the plastic zone size.

A yield stress gradient term is also induced when in inhomogeneous materials the crack tip plastic
zone interacts with interfaces that separate regions of di�erent yield stresses. Analytical expressions for
the yield stress gradient term near bimaterial interfaces and near interlayers have been developed. The
evaluations show that bimaterial transitions from a hard to a soft material increase the crack driving
force, soft±hard transitions decrease it. The size of the yield stress gradient term depends primarily on
the ratio of the plastic zone sizes in the two materials. The predictions of the model agree well with the
results of ®nite element computations by Sugimura et al. (1995). Experimental observations of the beha-
vior of fatigue cracks near bimaterial interfaces between ferritic and austenitic steel (Suresh et al., 1992,
1993) and between steel and Armco iron (Pippan and Flechsig, 1999) can be qualitatively explained.

Both soft and hard interlayers can act as e�ective obstacles for cracks, provided that the interlayer
thickness is of the order of the plastic zone radius of the softer material, or larger. For hard interlayers,
the crack driving force has its minimum in front of the ®rst interface; for soft interlayers, the minimum
appears near the second interface. These predictions have been con®rmed experimentally by Pippan and
Flechsig (1999).

The derived expressions for Cy can be used to optimize functionally graded materials and interface
and interlayer transitions in composites so that the fracture resistance increases. Further implications of
the yield stress gradient e�ect for cracks parallel to interfaces and for the behavior of cracks near hard
or soft particles have been discussed.

The yield stress gradient e�ect plays an important role for the fracture behavior in multiphase or com-
posite materials, in functionally graded materials, as well as in materials with special surface treatments
like nitrided or case-hardened steels, shot peened materials, or in ion implantation. Further applications
are found in brazed or welded components, or in components where the yield stress changes due to
steep temperature gradients.
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